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ABSTRACT 
We focus on a family of nonlinear Fredholm integral equations (NFIE) of the second kind [2] with separable kernels and 

power-law nonlinearity. By combining Laplace transform techniques, power-series representations, and fixed-point 

theory, the integral equation is rigorously reduced to a finite-dimensional nonlinear algebraic equation. The solutions 
exist using Schauder’s fixed-point theorem, while local uniqueness is obtained via the Banach contraction principle. A 

complete parameter-dependent analysis is presented, identifying conditions under which solutions exist, are unique, or 
exhibit multiplicity. The results generalize known quadratic cases to arbitrary positive powers and provide a unified and 

transparent analytical framework. 

 

Keywords: Nonlinear Fredholm integral equation; Laplace–series method; power-law nonlinearity; existence and 

uniqueness; bifurcation analysis. 

http://www.jarm-s.com/index.php/MS/article/view/70
mailto:smukmathematics@gmail.com


Journal of Advance Research in Mathematics and Statistics ISSN 2208-2409 

Volume-12 | Issue-1 | Dec, 2025 32 

 

 

1 INTRODUCTION 
NFIE of the second kind arise in a wide range of applications in physics, applied mathematics and engineering [2, 3]. 

While numerical methods are commonly employed, analytical investigations remain crucial for understanding solution 

structure, multiplicity, and parameter dependence. 

For equations with separable kernels, classical techniques allow dimensional reduction; however, in many works the 

solution structure is assumed a priori. The objective of this paper is to present a unified and fully justified analytical 

framework that combines Laplace transforms, series methods, and fixed-point theory for a family of NFIE with power- 

law nonlinearity [2]. 

The novelty of the current work lies not in introducing a new equation, but in providing a rigorous synthesis of analytical 

tools together with a complete parameter-dependent classification of solutions. 

2 PROBLEM STATEMENT AND ASSUMPTIONS [8] 
Let consider the NFIE  

 𝑢(𝑥) = 𝑥 + 𝜆 ∫
1

0
𝑥 𝑡 𝑢𝑝(𝑡) 𝑑𝑡,        𝑥 ∈ [0,1], (1) 

where  

 𝑝 > 0,        𝜆 > 0. 

We seek solutions in the Banach space 𝐶[0,1] which is equipped with the supremum norm  

 ∥ 𝑢 ∥∞= max
𝑥∈[0,1]

|𝑢(𝑥)|. 

Throughout the paper, we assume  

 𝑢(𝑥) ≥ 0    for all 𝑥 ∈ [0,1], 

which is natural in view of the solution structure obtained below and is required when 𝑝 is non-integer. 

3 STRUCTURAL REDUCTION 
Since the kernel 𝐾(𝑥, 𝑡) = 𝑥𝑡 is separable, the equation will be,  

 𝑢(𝑥) = 𝑥 + 𝜆𝑥 ∫
1

0
𝑡 𝑢𝑝(𝑡) 𝑑𝑡. (2) 

 

Define  

 𝑘 = ∫
1

0
𝑡 𝑢𝑝(𝑡) 𝑑𝑡. (3) 

 

Then  

 𝑢(𝑥) = 𝑥(1 + 𝜆𝑘). (4) 

 

This representation suggests that any solution must be linear in 𝑥, a fact rigorously justified in the next section. 

4 LAPLACE–SERIES DERIVATION 
Let 𝑈(𝑠) = ℒ{𝑢(𝑥)}. Taking the Laplace transform gives  

 𝑈(𝑠) = (1 + 𝜆𝑘)ℒ{𝑥} =
1+𝜆𝑘

𝑠2 . (5) 

 

Applying the inverse Laplace transform yields  

 𝑢(𝑥) = (1 + 𝜆𝑘)𝑥. (6) 

 

To confirm consistency with series methods, assume  

 𝑢(𝑥) = ∑∞
𝑛=0 𝑐𝑛𝑥𝑛. (7) 

Termwise Laplace transformation and coefficient comparison show that all coefficients vanish except 𝑐1, yielding  

 𝑢(𝑥) = 𝑐1𝑥,        𝑐1 = 1 + 𝜆𝑘. (8) 

 

Thus, the Laplace and series approaches are fully consistent. 
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5 REDUCTION TO A NONLINEAR ALGEBRAIC EQUATION [5, 6] 
Substituting 𝑢(𝑥) = 𝑎𝑥 into the definition of 𝑘, we obtain  

                     𝑘 = ∫
1

0
𝑡(𝑎𝑡)𝑝 𝑑𝑡 = 𝑎𝑝 ∫

1

0
𝑡𝑝+1 𝑑𝑡 =

𝑎𝑝

𝑝+2
. (9) 

 

Hence,  

 𝑎 = 1 +
𝜆

𝑝+2
𝑎𝑝, (10) 

 or equivalently,  

 𝜆𝑎𝑝 − (𝑝 + 2)𝑎 + (𝑝 + 2) = 0. (11) 

6 EXISTENCE OF SOLUTIONS 
Define the operator 𝑇: 𝐶[0,1] → 𝐶[0,1] by  

 (𝑇𝑢)(𝑥) = 𝑥 + 𝜆𝑥 ∫
1

0
𝑡 𝑢𝑝(𝑡) 𝑑𝑡. (12) 

 

For 𝑅 > 0, define  

 𝐵𝑅 = {𝑢 ∈ 𝐶[0,1]: ∥ 𝑢 ∥∞≤ 𝑅}. 

LEMMA 6.1 (INVARIANT BALL) 
There exists 𝑅 > 0 such that 𝑇(𝐵R) ⊂ 𝐵R. 

 

 Proof. For 𝑢 ∈ 𝐵𝑅,  

 ∥ 𝑇𝑢 ∥∞≤ 1 +
𝜆𝑅𝑝

2
. 

Choosing 𝑅 such that 1 +
𝜆𝑅𝑝

2
≤ 𝑅 ensures invariance.  

THEOREM 6.2 (EXISTENCE) 
The NFIE admits at least one solution in 𝐶[0,1]. 

Proof. The operator 𝑇 is continuous and compact [1, 4] by the Arzelà–Ascoli theorem and maps the closed, convex set 𝐵R 

into itself. Schauder’s fixed-point theorem gives guarantees the existence of a fixed point. 

7 LOCAL UNIQUENESS OF SOLUTIONS 

THEOREM 7.1 (LOCAL UNIQUENESS) 
If 𝜆 𝑝 𝑅𝑝−1 < 2, then the NFIE [2, 8] has at most one solution in 𝐵𝑅.  

 

Proof. For 𝑢, 𝑣 ∈ 𝐵𝑅,  

 |𝑢𝑝(𝑡) − 𝑣𝑝(𝑡)| ≤ 𝑝𝑅𝑝−1|𝑢(𝑡) − 𝑣(𝑡)|. 

Hence,  

 ∥ 𝑇𝑢 − 𝑇𝑣 ∥∞≤
𝜆𝑝𝑅𝑝−1

2
∥ 𝑢 − 𝑣 ∥∞. 

If 𝜆𝑝𝑅𝑝−1 < 2, the operator 𝑇 is a contraction. Uniqueness follows from Banach’s fixed-point theorem. 

8 PARAMETER-DEPENDENT EXISTENCE OF SOLUTIONS [7] 
Here, we find the values of the parameters 𝑝 and 𝜆 for which the NFIE admits solutions. As shown in the previous 

sections, solutions of the integral equation are characterized by the nonlinear algebraic equation [9, 10]  

 𝜆𝑎𝑝 − (𝑝 + 2)𝑎 + (𝑝 + 2) = 0,        𝑎 > 0, (13) 

 where 𝑝 > 0 and 𝜆 > 0. 

Let  

 𝐹(𝑎) = 𝜆𝑎𝑝 − (𝑝 + 2)𝑎 + (𝑝 + 2). 

Clearly, 𝐹 is continuous on (0, ∞). 

8.1 CASE 𝟎 < 𝒑 < 𝟏 
For 0 < 𝑝 < 1, we observe that  

 lim
𝑎→0+

𝐹(𝑎) = 𝑝 + 2 > 0,        lim
𝑎→∞

𝐹(𝑎) = −∞. 

Hence, by the Intermediate Value Theorem, equation (13) admits at least one non-negative solution for every 𝜆 > 0. 

 

 0 < 𝑝 < 1, 𝜆 > 0    ⟹    at least one solution exists. 
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8.2 CASE 𝒑 = 𝟏 
When 𝑝 = 1, equation (13) reduces to  

 (𝜆 − 3)𝑎 + 3 = 0. 

Thus,  

 𝑎 =
3

3−𝜆
. 

If 𝜆 ≠ 3, there exists a unique positive solution, whereas no solution exists when 𝜆 = 3. 

 

 𝑝 = 1, 𝜆 ≠ 3 ⇒ unique solution,        𝑝 = 1, 𝜆 = 3 ⇒ no solution. 

8.3 CASE 𝒑 > 𝟏 
For 𝑝 > 1, we have  

 𝐹(0) = 𝑝 + 2 > 0,        lim
𝑎→∞

𝐹(𝑎) = +∞. 

In this case, solutions exist only if the global minimum of 𝐹 is non-positive. 

The unique critical point of 𝐹 is given by  

 𝑎∗ = (
𝑝+2

𝜆𝑝
)

1

𝑝−1
, 

and the corresponding critical parameter value is  

 𝜆𝑐 =
(𝑝+2)(𝑝−1)𝑝−1

𝑝𝑝 . (14) 

 

Accordingly, equation (13) admits:   

    • two non-negative solutions if 0 < 𝜆 < 𝜆𝑐,  

    • exactly one (double) solution if 𝜆 = 𝜆𝑐,  

    • no solution if 𝜆 > 𝜆𝑐.  

8.4 SUMMARY OF RESULTS 
The above analysis can be summarized as follows: 

• For 0 < 𝑝 < 1, solutions exist for all 𝜆 > 0. 

• For 𝑝 = 1, a unique solution exists for 𝜆 ≠ 3, while no solution exists for 𝜆 = 3. 

• For 𝑝 > 1, solutions exist if and only if 𝜆 ≤ 𝜆c, where 𝜆c is given by (14). 

This classification explains the dependence of existence and multiplicity of solutions on the parameters 𝑝 and 𝜆. 

9 MATLAB CODE SECTION [11] 
clear; clc; close all; 

lambda = input(’Enter value of lambda (e.g. 0.7): ’); 

p = input(’Enter power p (e.g. 2, 3, 1.5): ’); 

f = @(a) lambda*a.^p - (p+2)*a + (p+2); 

initial_guesses = linspace(0.01, 20, 50); roots_found = []; 

for i = 1:length(initial_guesses) try a0 = fzero(f, initial_guesses(i)); 

if isreal(a0) a0 > 0 roots_found(end+1) = a0; end catch end end 

a_vals = unique(round(roots_found,6)); 

fprintf(’ positive solutions for a:’); disp(a_vals.’) 

 

if isempty(a_vals) error(’No real positive solutions found for given parameters.’); 

end 

x = linspace(0,1,200); 

figure; hold on; grid on; 

for k = 1:length(a_vals) u = a_vals(k)*x; plot(x, u, ’LineWidth’, 2, ... ’DisplayName’, sprintf(’u(x) = end 

xlabel(’x’); ylabel(’u(x)’); title(sprintf(’Solutions for p = legend(’show’,’Location’,’northwest’); 
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fprintf(’ verification:’); 

t = linspace(0,1,2000); 

for k = 1:length(a_vals) a = a_vals(k); u_t = a*t; integrand = t .* (u_t.^p); 

K = trapz(t, integrand); rhs = x .* (1 + lambda*K); lhs = a*x; err = max(abs(lhs - rhs)); 

fprintf(’a = a, K, err); 

end 

10 CONCLUSION 
A family of NFIE with power-law nonlinearity has been analyzed using Laplace transforms, series methods, and fixed- 

point theory. The problem is reduced to a nonlinear algebraic equation, existence and local uniqueness are rigorously 

established, and bifurcation behavior is completely characterized. The framework generalizes known quadratic cases and 

provides a foundation for further extensions. 
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