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ABSTRACT

We focus on a family of nonlinear Fredholm integral equations (NFIE) of the second kind [2] with separable kernels and
power-law nonlinearity. By combining Laplace transform techniques, power-series representations, and fixed-point
theory, the integral equation is rigorously reduced to a finite-dimensional nonlinear algebraic equation. The solutions
exist using Schauder’s fixed-point theorem, while local uniqueness is obtained via the Banach contraction principle. A
complete parameter-dependent analysis is presented, identifying conditions under which solutions exist, are unique, or
exhibit multiplicity. The results generalize known quadratic cases to arbitrary positive powers and provide a unified and
transparent analytical framework.

Keywords: Nonlinear Fredholm integral equation; Laplace-series method; power-law nonlinearity; existence and
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1 INTRODUCTION

NFIE of the second kind arise in a wide range of applications in physics, applied mathematics and engineering [2, 3].
While numerical methods are commonly employed, analytical investigations remain crucial for understanding solution
structure, multiplicity, and parameter dependence.

For equations with separable kernels, classical techniques allow dimensional reduction; however, in many works the
solution structure is assumed a priori. The objective of this paper is to present a unified and fully justified analytical
framework that combines Laplace transforms, series methods, and fixed-point theory for a family of NFIE with power-
law nonlinearity [2].

The novelty of the current work lies not in introducing a new equation, but in providing a rigorous synthesis of analytical
tools together with a complete parameter-dependent classification of solutions.

2 PROBLEM STATEMENT AND ASSUMPTIONS [8]
Let consider the NFIE
u(x) =x+Af, xtuP(t)dt, x€[01], 1)
where
p >0, A>0.
We seek solutions in the Banach space €[0,1] which is equipped with the supremum norm
hullo= xrg[g}gllu(x)l-
Throughout the paper, we assume
u(x) =0 forallx €[0,1],
which is natural in view of the solution structure obtained below and is required when p is non-integer.

3STRUCTURAL REDUCTION

Since the kernel K (x, t) = xt is separable, the equation will be,

u(x) = x + Ax [, tuP(t) dt. )
Define
k=[] tu(t) dt. A3)
Then
u(x) = x(1 + k). 4)

This representation suggests that any solution must be linear in x, a fact rigorously justified in the next section.

4 LAPLACE-SERIES DERIVATION
Let U(s) = L{u(x)}. Taking the Laplace transform gives

U(s) = (1+ ) L{x} = 55, ()
Applying the inverse Laplace transform yields
u(x) = (1 + Ak)x. (6)
To confirm consistency with series methods, assume
u(x) = Yo Cax™ ()
Termwise Laplace transformation and coefficient comparison show that all coefficients vanish except c,, yielding
ux)=cx, c¢=1+41k. (8)

Thus, the Laplace and series approaches are fully consistent.
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5 REDUCTION TO A NONLINEAR ALGEBRAIC EQUATION [5, 6]
Substituting u(x) = ax into the definition of k, we obtain

1 1 aP
k= [, t(at)? dt = aP [ tP* dt = e 9)
Hence,
a=1+ p%a”, (10)
or equivalently,
Aa?P —(p+2)a+(p+2)=0. (11)
6 EXISTENCE OF SOLUTIONS
Define the operator T: C[0,1] — C[0,1] by
(Tw)(x) = x + Ax [ tuP(t) dt. (12)

For R > 0, define
Br ={u€C[01]:ll u llo< R}.

LEMMA 6.1 (INVARIANT BALL)
There exists R > 0 such that T(Bgr) < Br.

Proof. For u € By,
D
I Tu o< 1+ 25

. P L
Choosing R such that 1 + % < R ensures invariance.

THEOREM 6.2 (EXISTENCE)
The NFIE admits at least one solution in C[0,1].

Proof. The operator T is continuous and compact [1, 4] by the Arzela—Ascoli theorem and maps the closed, convex set Bg
into itself. Schauder’s fixed-point theorem gives guarantees the existence of a fixed point.

7 LOCAL UNIQUENESS OF SOLUTIONS
THEOREM 7.1 (LOCAL UNIQUENESS)
If 2p RP~1 < 2, then the NFIE [2, 8] has at most one solution in By.

Proof. For u, v € Bg,
[uP (t) = vP ()] < pRP~u(t) — v(D)|.
Hence,
ApRP—1
2

I Tu—Tv lle< lu—7 .

If ApRP~1 < 2, the operator T is a contraction. Uniqueness follows from Banach’s fixed-point theorem.

8 PARAMETER-DEPENDENT EXISTENCE OF SOLUTIONS [7]
Here, we find the values of the parameters p and A for which the NFIE admits solutions. As shown in the previous
sections, solutions of the integral equation are characterized by the nonlinear algebraic equation [9, 10]

AdP —(p+2)a+(p+2)=0, a>0, (13)
wherep > 0and 4 > 0.
Let

F(a) =Aa? —(p+2)a+ (p + 2).
Clearly, F is continuous on (0, ).

81CASEO<p<1
For 0 < p < 1, we observe that

limFla)=p+2>0, limF(a) = —oo.
a-0% a—o

Hence, by the Intermediate Value Theorem, equation (13) admits at least one non-negative solution for every A > 0.

0<p<1 A>0 = atleastone solution exists.
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82CASEp=1
When p = 1, equation (13) reduces to
A-3)a+3=0.

Thus,

gz
T3-4

If 2 # 3, there exists a unique positive solution, whereas no solution exists when A = 3.

p =1, 2 # 3 = unique solution, p =1, A =3 = no solution.

83CASEp>1
For p > 1, we have
FO)=p+2>0, lim F(a) = +oo.

a—oo
In this case, solutions exist only if the global minimum of F is non-positive.

The unique critical point of F is given by
1

_ (p+2\p-1
a*_(lp) ’

and the corresponding critical parameter value is

_ (+2)@-P !
A = — (14)

Accordingly, equation (13) admits:
* two non-negative solutions if 0 < 1 < A4,
» exactly one (double) solution if A = A,
* no solution if 4 > A..

8.4 SUMMARY OF RESULTS
The above analysis can be summarized as follows:

« For 0 < p < 1, solutions exist for all 2 > 0.
« For p = 1, a unique solution exists for A # 3, while no solution exists for 1 = 3.
* For p > 1, solutions exist if and only if 4 < A, where A is given by (14).

This classification explains the dependence of existence and multiplicity of solutions on the parameters p and A.

9 MATLAB CODE SECTION [11]
clear; clc; close all;

lambda = input(’Enter value of lambda (e.g. 0.7): *);

p = input(’Enter power p (e.g. 2, 3, 1.5):’);

f= @(a) lambda*a."p - (p+2)*a + (p+2);

initial_guesses = linspace(0.01, 20, 50); roots_found = [];

for i = L:length(initial_guesses) try a0 = fzero(f, initial_guesses(i));
if isreal(a0) a0 > 0 roots_found(end+1) = a0; end catch end end
a_vals = unique(round(roots_found,6));

fprintf(” positive solutions for a:”); disp(a_vals.”)

if isempty(a_vals) error(’No real positive solutions found for given parameters.’);

end

x = linspace(0,1,200);

figure; hold on; grid on;

for k = 1:length(a_vals) u = a_vals(k)*x; plot(x, u, ’LineWidth’, 2, ... ’DisplayName’, sprintf("u(x) = end
xlabel(’x”); ylabel("u(x)”); title(sprintf(’Solutions for p = legend(’show’,’Location’, northwest’);
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fprintf(’ verification:’);

t=

linspace(0,1,2000);

for k = 1:length(a_vals) a =a_vals(k); u_t = a*t; integrand =t .* (u_t."p);

K = trapz(t, integrand); rhs = x .* (1 + lambda*K); Ihs = a*x; err = max(abs(lhs - rhs));

fprintf(’a = a, K, err);

end

10 CONCLUSION

A family of NFIE with power-law nonlinearity has been analyzed using Laplace transforms, series methods, and fixed-
point theory. The problem is reduced to a nonlinear algebraic equation, existence and local uniqueness are rigorously
established, and bifurcation behavior is completely characterized. The framework generalizes known quadratic cases and
provides a foundation for further extensions.
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