
 

                                                                                                                          
 

        
 

   
 

 
 

 
 

 
 
 
 
 
 
ABSTRACT 
We take the definition for 𝑛!, which takes on integer values 𝑛 ≥ 1, and, through a conjecture, generalize it to 𝑛 > 
−∞, from which we demonstrate that 𝑙𝑛(0) is a complex number. 
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INTRODUCTION 
The characterization of the natural log of zero (i.e. 𝑙𝑛(0)), as given in all mathematics texts and references, is that it is 
“undefined”, with no additional details of what this really means. This characterization is trivially obvious because  
lim 𝑙𝑛 𝑥 → −∞. The question we try to address here is how does the trajectory of the approach to −∞ occur? 

  𝑥→0 
 
There is currently no mention in the literature of how the approach to −∞ happens, i.e. whether the path follows the real 
axis or it goes through the complex plane. All we are told is that 
lim 𝑙𝑛 𝑥 → −∞. 
𝑥→0 
 
The objective here is to demonstrate that the trajectory of 𝑙𝑛(0) towards −∞ goes through the complex plane. The proof 
of this is carried out by extending the definition for 𝑛!, which takes on integer values 𝑛 ≥ 1, to 𝑛 ≥ −∞, from which 
we demonstrate that 𝑙𝑛(0) is a complex number. 

 
Proof 
We begin with the definition of n!: 
𝑛! = 𝑛 × (𝑛 − 1) × (𝑛 − 2) × … × 2 × 1 𝑛 ≥ 1                         (1) 
 
We also show below that: 

𝑛!      = 𝑛 × (𝑛 − 1) × ∙∙∙ × (𝑛 − 𝑚 + 1) for integer 𝑛 ≥ 𝑚                                                                        (2a) 
                 (𝑛−𝑚) 
   
  Equating 𝑚 in 2a to 𝑛 leads to: 
                        𝑛!   = 𝑛 × (𝑛 − 1) × ∙∙∙ × 2 × 1                                                                                                                   (2b) 
                     0!

 
which, upon comparing with Equation 1, implies that: 

0! = 1                         (2c) 
 
Combining Equations 1 and 2b yields: 

𝑛! = 𝑛 × (𝑛 − 1) × (𝑛 − 2) × … × 2 × 1 × 0!                         (3) 
 

Conjecture: Generalise 𝑛! by expressing 0! in Equation 1 as: 
0! = 1 = 0 × (−1) × (−2) … × −∞                        (4a) 

 
allowing 𝑛! to extend from integer 𝑛 going all the way down to −∞, i.e: 

𝑛! = 𝑛 × (𝑛 − 1) × (𝑛 − 2) × … × 2 × 1 × 0 × −1 × −2 × … × −∞                       (4b) 
 

while still satisfying Equations 2 and 3. 
 

Writing Equation 4a as:  
1 = 0 × ∏∞

 (-j)                                                                                                                                                                                                                                                    (4c) 
 
and substituting the identity 𝑒𝑖𝜋 = −1, where 𝑖 = √−1 , into 4b yields: 
1 = 0 × ∏∞

 𝑗=1 (𝑒𝑖𝜋𝑗)                                                                                                                                                        (5)                                                                                                                    
 
Taking the natural logarithm of both sides of 5 and re-arranging leads to: 

𝑙𝑛(0) = − ∑∞
     {𝑙𝑛(𝑗) + 𝑖𝜋} 

 
or 

𝑙𝑛(0) = − ∑∞     𝑙𝑛(𝑗) − lim {𝑖𝑗𝜋}                                                                                                                     (6) 
                                       𝑗→∞ 

 
which can be re-written as: 

𝑙𝑛(0) = − lim {𝑙𝑛(𝑗!) + 𝑖𝑗𝜋}                         (7) 
                                   𝑗→∞ 
 
Using Stirling approximation for 𝑗! in the limit 𝑗 ≫ 1 (Bender and Orszag, 1999): 

lim 𝑗! ~√2𝜋𝑗 {𝑗}
𝑗                         

(8a) 
j>>1                 𝑒 

 

 

 

!

𝑗=1
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or: 

lim 𝑙𝑛(𝑗!)~ lim 𝑙𝑛 {√2𝜋𝑗 {𝑗}
𝑗
} = lim {1 ln(2𝜋𝑗) + 𝑗𝑙𝑛(𝑗) − 𝑗}                                      (8b) 

𝑗≫1                  𝑗≫1                𝑒                 𝑗≫1  2 
 

   
Substituting 8b into 7 gives: 

𝑙𝑛(0) = − lim {1 ln(2𝜋𝑗) + 𝑗𝑙𝑛(𝑗) − 𝑗 + 𝑖𝑗𝜋}                         (9) 
                                         𝑗→∞ 2 
 
Note that Equation 9 has a real component, 𝑥, and an imaginary component, 𝑦, where: 

𝑥 ≡ − lim {1 ln(2𝜋𝑗) + 𝑗𝑙𝑛(𝑗) − 𝑗}                        (10a) 
                               𝑗→∞ 2 
 
and: 
              𝑦 ≡ − lim {𝑗𝜋}                                                                                                                                              (10b) 

             𝑗→∞ 
 

Given that, in the limit 𝑗 → ∞, 𝑥 in Equation 10a has a dominant term, 𝑗𝑙𝑛(𝑗), such that 𝑗𝑙𝑛(𝑗) ≫1 ln(2𝜋𝑗) − 𝑗, we re- 
                                                                                                                                                                                     2 
write Equation 9 as: 

 
𝑙𝑛(0) = − lim {𝑗𝑙𝑛(𝑗)} − 𝑖 lim {𝑗𝜋}                         (11) 

                                            𝑗→∞                  𝑗→∞ 
 
Equation 11, therefore, shows that 𝑙𝑛(0) is a complex number, consisting of both a real and an imaginary component, i.e. 
lim {−𝑗𝑙𝑛(𝑗)} and lim {−𝑗𝜋}, respectively. 
𝑗→∞                            𝑗→∞ 
 
VISUALISING IN THE COMPLEX PLANE 
With 𝑥 and 𝑦, as given Equations 10a-b, both negative and representing the complex number 𝑧, with 𝑧 = 𝑥 + 𝑖𝑦, it is 
noted that the point falls in the third quadrant of the complex plane, as illustrated in Figure 1. Figure 2 displays the path 
of arg(𝑧) and 𝜃 as 𝑗 → ∞ , where: 
 

arg (𝑧) ≡ √𝑥2 + 𝑦2                        (12a) 
and 
𝜃 ≡ 𝑡𝑎𝑛−1  y                                   (12b) 
                  𝑥 
with x and y above coming from Equations 10a and 10b, respectively. 

 
 

 
Figure 1 – Schematic of 𝑧 = 𝑥 + 𝑖𝑦 in the complex plane. 
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Figure 2 – The trajectory of Equations 10a and 10b with growing 𝑗. It is noted that, as 𝑗 → ∞, 
𝐴𝑟𝑔 𝑧 → ∞ and 𝜃 → 𝜋− (or 180 in the third quadrant of the z-plane). 
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