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Abstract: -  
Two definitions of higher variations of a functional can be found in the literature of variational principles or calculus of 

variations, which differ by only a positive coefficient number. At first glance, such a discrepancy between the two 

definitions seems to be purely due to a definition-style preference, as when they degenerate to the first variation it leads 

to the same result. The use of higher (especially second) variations of a functional is for checking the sufficient condition 

for the functional to be a minimum (or maximum), and both definitions also lead to the same conclusion regarding this 

aspect. However, a close theoretical study in this paper shows that only one of the two definitions is appropriate and the 

other is advised to be discarded. A theoretical method is developed to derive the expressions for higher variations of a 

functional, which is used for the above claim. 
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1 INTRODUCTION 

Calculus of variations or variational principles has been widely used in engineering and physics by formulating the 

problems in terms of extremum principles for certain functionals. For elasticity problems in continuum mechanics, this 

comes to the familiar example of principles of minimum potential energy and principles of minimum complementary 

energy, which can be generalized with the use of Lagrange multipliers leading to Hellinger-Reissner (HR) and Hu-

Washizu (HW) variational principles, see Washizu [23]. The direct method of variational principles such as Rayleigh-

Ritz method and Galerkin’s method is powerful and has formed the basis for development of finite element (FE) 

formulations, see Bathe[1] and Zienkiewicz[25]. In some cases only the necessary conditions for a certain functional to 

be a minimum or maximum are needed, i.e. using the stationary property of the functional, and the sufficient conditions 

could be justified via common sense. However, the study of necessary conditions is needed when common sense fails to 

justify them easily. This leads to the consideration of higher variations of a functional, especially the second variations, 

see [3,4,18–20] for the application of second variations in mechanics. The first who considered the second variation and 

sufficient conditions in calculus of variations is due to Legendre in 1786 according to Todhunter[22], which was then 

further developed by Jacobi, Clebsch, Mayer, Weierstrass, Kneser, Hilbert etc, see [7,9,17] for a historical perspective. 

There are two forms of the second variations (or accordingly higher variations) for a functional, which can be broadly 

found in the literature and they differ by a positive coefficient n!, where n is the variation order. Take a functional I as an 

example, and consider its second variation, with 

                      (1.1) 

where 

 

is the dummy independent variable,and F(u, u′, x) is a known function of u,u′ 

and x, and F(u, u′, x) is assumed to take whatever smooth requirements in terms of operations throughout this paper. One 

form of the second variation 

                          (1.2) 

The other form 

                      (1.3) 

 

The first form described by Eq. 1.2 was used by Weierstrass in his unpublished lecture notes around 1879 and was favored 

by Bolza[2], Lanczos [12], Langhaar [13], Kot [11] and Tauchert [21] among many others. The second form in Eq. 1.3 

appears in most Chinese literature of variational principles such as Chen [5], Lao [14], Long et al [15] and Hu [10] as 

well as in notable English texts such as Courant and Hilbert [6], Gelfand and Fomin [8] and MestertonGibbons [16] 

among others. It is well known that the higher variations is for checking the sufficient condition for a functional to be a 

minimum or maximum and in this sense the conclusion made based on Eq. 1.2 or Eq. 1.3 does not make a difference 

since the two values always have the same sign being positive or negative or zero. This is why the difference between the 

two forms has not called much attention. Among the above mentioned literature, only Lao [14] presented both forms and 

treated the difference as a purely definition-style preference without further looking into it. The background behind these 

two definitions will be explored in this paper and it is found only the first form in Eq. 1.2 is consistent, and the second 

form in Eq. 1.3 has caused confusion and is advised to be discarded. 

 

2 Variational Process in conformity with Eq. 1.2 

In this session, the variational process associated with Eq. 1.2 regarding the functional defined by Eq. 1.1 will be reviewed, 

the first (or first order) variation will be defined in a natural way with Taylor’s series and further expansion of higher 

variations including second order and even higher order will be explored. 

2.1 Variation of u 

There is no harm to assume the problem of finding the function u(x) that minimizes the functional I in Eq. 1.1, with 

prescribed end conditions 

u(a) = ua,u(b) = ub                                   (2.1) 

 

For an admissible dependent function u(x) , i.e. meeting the end conditions described by Eq. 2.1, Eq. 1.1 yields a numerical 

value of I, which means that I is a function of function and therefore termed functional. In the calculus ofvariations, 

interest is placed on the minimizing curve denoted by u(x). To this end, u(x) is replaced by an admissible neighbour 

function, or called comparison function u(x), and the behavior of the value of I(u) is observed as u(x) changes to u(x). The 

difference between u(x) and u(x) is defined to be the variation of u(x) and is denoted by δu, see Fig. 1, thus 

            (2.2) 

 

Sometimes for the convenience of using the differential calculus, the variation of u(x) is represented by 

δu ≡ ϵη(x)                         (2.3) 

 

where ϵ is a small parameter independent of x and η(x) is an arbitrary function which must meet the admissible requirement 

in Eq. 2.1 so that 
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Fig. 1 Variation of u(x) 

 

η(a) = η(b) = 0                                      (2.4) 

 

The use of variational operator “δ” is becoming more and more popular with researchers and engineers, although 

Weinstock [24] disapproved the use of it. 

 

2.2 Variation of F 

We next consider the behavior of the function F(u, u′, x) in the neighbourhood of the minimizing curve u(x) , which leads 

to the natural definition of δF. For a fixed x,F(u, u′, x) depends upon u and u′. So F(u, (u)′, x) differs from F(u, u′, x) by 

the increment (sometimes called total variation) 

                     (2.5) 

We may expand F(u + δu, u′ + (δu)′,x) in a Taylor’s series as 

                  (2.6) 

 

The first variation of F is defined as 

                        (2.7) 

The second variation of F is defined as 

                         (2.8) 

 

Similarly, the n − th variation of F is defined as 

                         (2.9) 

 

As most variational principles refer to the first variation, in this paper higher variations refer to second variations and 

above.For an exceptional case 

                   (2.10) 

Inserting Eq. 2.10 into eq Eq. 2.7, leads to a corollary: 

                      (2.11) 

 

,which means the variational operator and differential operator are interchangeable. This corollary has been stated in many 

textbooks on variational principles without a strict proof. 

Note that we write 

a b x 

u 

u(a) 

u(b) 

u(x) 

u(x) 

δ u 
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                        (2.12) 

 

By using Eq. 2.11 and, Eq. 2.12, the Eq. 2.7 to Eq. 2.9 can now be respectively written as 

                    (2.13) 

                      (2.14) 

                     (2.15) 

 

By Eq. 2.14, if we set 

F(u, u′,x) = u                     (2.16) 

 

Then obviously 

δ(δu) = δ2u = 0                  (2.17) 

 

Similarly, if we set F(u, u′, x) = u′ (Eq. 2.10) then by Eq. 2.14, we have 

                   (2.18) 

 

Therefore, the Eq. 2.17 and Eq. 2.18 are the corollaries. 

From Eq. 2.13, it is easy to shown (proof omitted here): 

                        (2.19) 

                     (2.20) 

 

With Eq. 2.17-Eq. 2.20, now it is possible to get δ(δF) and compare this with δ2F in Eq. 2.14. The result is confirmative, 

as shown below 

 
 

Therefore, we have the corollary 

                   (2.22) 

In general, 

              (2.23) 

 

This seems obvious, but it will be shown in Section 3 that the types of equation similar to Eq. 2.22 and Eq. 2.23 will fail 

to exist if the definition of the second variation is with conformity of Eq. 1.3, thus causing inconsistency. We will call the 

approach for obtaining δ2F from δ(δF) the “δδ” approach in this paper. Substitution of the definitions from Eq. 2.7 - Eq. 

2.9 into Eq. 2.6 yields 

                       (2.24) 

 

2.3 Variation of I 

The difference between the minimum value of I and the value of I evaluated for varied curve u(x) may now be written as 

                            (2.25) 

 

By virtue of Eq. 2.24, we have 

                        (2.26) 

 

The first, second and n − th variations of the functional I are respectively defined by Eq. 2.27 - Eq. 2.29. 
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                   (2.27) 

                    (2.28) 

                   (2.29) 

Similar to Eq. 2.23, we have in general 

δ(δn−1I) = δnI                   (2.30) 

 

Substitution of Eq. 2.27 - Eq. 2.29 into Eq. 2.26 yields 

                    (2.31) 

 

By requiring δI = 0, the Euler-Lagrange equation can be derived as shown in Eq. 2.32, which shows a necessary condition 

in terms of differential equations for the minimizing curve u(x) in order for I to be a minimum. The proof of this can be 

found in many standard texts on this such as Lanczos [12]. 

               (2.32) 

 

3 Variational Process in conformity with Eq. 1.3 

Rather than go through all the similar steps in Section 2, we focus on the main steps and changes during the variational 

process implied by Eq. 1.3. 

 

3.1 Variation of u 

The first variation of u is still defined by Eq. 2.2 and Eq. 2.3, which are repeated below. 

 
It will be shown in Section 3.2 that the second variation of u in conformity with Eq. 1.3 is also zero. 

 

3.2 Variation of F 

Due to the definition in Eq. 1.3, the set of equations similar to those in Eq. 2.13 to Eq. 2.15 regarding the variations of F 

will take different forms accordingly. The definition of Eq. 2.13 for the first variation of F is the same, but the Eq. 2.14 

and Eq. 2.15 for higher order change to Eq. 3.1 and Eq. 3.2 in order to be in conformity with Eq. 1.3. 

                              (3.1) 

                                    (3.2) 

 

It can be seen that the definition of Eq. 3.2 for n−th variation will degenerate to the first variation when n = 1. Note that 

we have used δ˜2 and δ˜n to represent the second variation and n−th variation in conformity with Eq. 1.3, to distinguish 

them from those defined in Section 2. For the first variation, there is no difference between δ and δ˜, and so we have used 

the symbol δ for the above first variations. 

Similar to the procedures in Section 2, by setting F(u, u′,x) = u (Eq. 2.16) F(u, u′,x) = u′ (Eq. 2.10), respectively, and then 

by inserting these into Eq. 3.1, we still have similar corollaries like Eq. 2.17 and Eq. 2.18, 

δ(δu) = δ˜2u = 0                     (3.3) 

δ(δu′) = δ˜2u′ = 0                    (3.4) 

 

Now, let’s calculate δ(δF). 

             (3.5) 

 

which means that δ(δF) or δ˜(δF˜ ) is no longer equal to δ˜2F defined by Eq. 3.1, but equal to 2! δ˜2F, which is awkward. 

Similarly, the form similar to Eq. 2.23 fails to exist for δ˜n. Actually, from Eq. 2.15 and Eq. 3.2, we can easily obtain 

when n ≥ 1 (3.6) 
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Also, obviously 

when n ≥ 2 (3.7) 

 

Therefore, 

  (3.8) 

  

From Eq. 3.6, it is obvious that 

                       (3.9) 

 

Although this derivation is done for F, similar process can be made for the functional I. This constitutes the main objection 

of using Eq. 1.3 as the definition of the second variation. Also, implied by Eq. 1.3, the Eq. 2.24 for the total increment of 

F, needs to be updated by 

                         (3.10) 

3.3 Variation of I 

From Eq. 2.25 and Eq. 3.10, we have 

                   (3.11) 

 

The first, second, n − th variations of I are defined similar to Eq. 2.27 to Eq. 2.29 respectively. So, 

                    (3.12) 

                          (3.13) 

                          (3.14) 

From Eq. 3.11, we have 

                      (3.15) 

 

The Eq. 3.15 is the definition given for the total increment of the functional I(u) when the dependent function changes 

from u to (u + δu) , which is in conformity with some literature related to Eq. 1.3 in Section 1, see Long et al [15], Gelfand 

and Fomin [8], and Mesterton-Gibbons [16]. 

First, let’s consider 

                      (3.16) 

 

From Eq. 3.13, we conclude that 

               (3.17) 

As discussed in Section 3.2, this Eq. 3.17 is awkward. 

Further, 

 

                    (3.19) 

                   (3.20) 

                                 (3.21) 
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4 Summary of the results and discussions from the variational processes 

The origin of calculus of variations occurred about the same time period when Newton and Leibniz invented calculus of 

functions. There are many similarities between the differential operator and variational operator and it would be tempting 

to compare the forms between the total increment of a functional caused by variation of the dependent variable and the 

total increment of a function caused by the change of independent variable. Let’s look at the Taylor’s series for a function 

f(x) first. 

For a function f(x) with the independent variable changes from x to x+∆x, the total increment is gives as 

 
 

For a functional I(u) caused by a variation of the dependent function, in Section 2 in conformity with Eq. 1.2, Eq. 2.31 

gives 

                              (4.2) 

 

For a functional I(u) caused by a variation of the dependent function, in Section 3 in conformity with Eq. 1.3, Eq. 3.15 

gives 

                     (4.3) 

 

Obviously compared with Eq. 4.3, Eq. 4.2 is closer to Eq. 4.1 in terms of forms. Also, from the calculus of functions, we 

know that or , where d is the differential operator of a function. There seems no reason 

why δ(δI) should not equal δ2I if we adopt the use of the variational operator. But according to the definition of higher 

variations in conformity with Eq. 1.3, δ˜(δI˜ ) does not equal δ˜2I , as shown by Eq. 3.17. Such an inconsistence can be 

traced or induced by the definition in Eq. 3.15 or Eq. 4.3. Actually when the first variation of F or I is defined, it will be 

natural to check whether the second variation can be obtained from the first variation by having a further variation, and 

higher variations follow similar ways ( “δδ” approach). 

From Eq. 4.2 and Eq. 4.3, we have 

                (4.4) 

 

Similarly, we have 

 
 

The comparison for the variational processes in Section 2 (δk) and Section 3 (δ˜k) is summarized in the Table 1, where 

some of the equations are obvious and shown without proof. It should be noted that by making use of Eq. 2.3, the second 

variations of I can be expressed by Eq. 4.6 and Eq. 4.7 without the use of δ, which is the similar case for higher (than 2) 

variations. 

                   (4.6) 

                 (4.7) 

 

5 Conclusion 

The fundamental variational process is reviewed in this paper, with a focus on the higher variation. Two definitions of 

higher variations of a functional (with the operator δn and δ˜n respectively) are broadly found in the literature and they 

differ by a positive coefficient. The relationships between the two definitions for the higher variations are theoretically 

derived and summarized. When the two definitions of higher variations degenerate to the first variation, the difference 

disappears. It is found that the operator δn complies with the “δδ” approach, which means δ2 is equal to δδ. However, the 

operator δ˜n fails to comply with this. Therefore, the definitions for higher variations in terms of δ˜n are strongly advised 

to be discarded. Although a specific functional form is used in this paper, the conclusion should not be restricted by this. 
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Table 1. Summary of the results between δk and δ˜k 

 
 

References 

[1].Bathe, K.J.: Finite element Procedures. Prentice Hall, New Jersey (1996) 

[2].Bolza, O.: Lectures on the calculus of variations. University of Chicago Press, Chicago (1904) 

[3].Capodanno, P.: Calculation of the second variation in the problem of the stability of the steady motion of a rigid body 

containing a liquid 61(2), 319–324 (1997) 

[4].Carlson, D.A., Leitmann, G.: Fields of extremals and sufficient conditions for the simplest problem of the calculus of 

variations in n-variables. Springer Optimization and Its Applications 33, 75–89 (2009) 

[5].Chen, W.: Variational Principles in Mechanics. Tongji University Press, Shanghai (1987) 

[6].Courant, R., D., H.: Methods of Mathematical Physics, Vol. I, 1st edn. Interscience Publishers, Inc., New York (1953) 

[7].Fraser, C.G.: Sufficient conditions, fields and the calculus of variations. Historia Mathematica 4(36), 420–427 (2009). 

DOI 10.1016/j.hm.2009.02.001. URL http://dx.doi.org/10.1016/j.hm.2009.02.001 

[8].Gelfand, M., Fomin, S.: Calculus of Variations. Prentice-Hall, Inc., New Jersey (1963) 

[9].Goldstine, H.: A History of the Calculus of Variations from the 17th through the 19th Century, 1st edn. Springer-

Verlag, New York (1980) 

[10]. Hu, H.: The variational principle of elasticity and its application. China Science Publishing and Media Ltd., Beijing 

(1981) 

[11]. Kot, M.: A First Course in the Calculus of Variations. American Mathematical Society, Rhode Island (2000) 

[12]. Lanczos, C.: The Variational Principles of Mechanics. University of Toronto Press, Toronto (1952) 

[13]. Langhaar, H.: Energy Methods in Applied Mechanics. John Wiley and Sons, Inc., New York (1962) 

[14]. Lao, D.: Fundamentals of the Calculus of Variations, 2nd edn. National Defense Industry Pres, Beijing (2011) 

[15]. Long, Y., Liu, G., He, F., Luo, X.: New Discussions on Energy theorems. China Architecture and Building Press, 

Beijing (2004) 

[16]. Mesterton-Gibbons, M.: A Primer on the Calculus of Variations and Optimal Control Theory. American 

Mathematical Society, Rhode Island (2000) 

[17]. Osgood, W.F.: Sufficient Conditions in the Calculus of Variations. Annals of Mathematics 2(1/4), 105–129 (1900) 

[18]. Simpson, H.C., Spector, S.J.: On the positivity of the second variation in finite elasticity. Archive for Rational 

Mechanics and Analysis 98(1), 1–30 (1987). DOI 

10.1007/BF00279960 

[19]. Suo, X., Combescure, A.: Second variation of energy and an associated line independent integral in fracture 

mechanics. I-Theory. European Journal of Mechanics - A/Solids 11(5), 609–624 (1992) 

[20]. Suo, X.Z., Valeta, M.P.: Second variation of energy and an associated line independent integral in fracture 

mechanics. II. Numerical validations. European Journal of Mechanics, A/Solids 17(4), 541–565 (1998). DOI 

10.1016/S0997-7538(99)80022-9 

[21]. Tauchert, T.: Energy Principles in Structural Mechanics. McGraw-Hill, Inc., New York (1974) 

Journal of Advance Research in Mathematics and Statistics (ISSN: 2208-2409)

Vol. 6 No. 2 (2019) 8



[22]. Todhunter, I.: A History of the Progress of the Calculus of Variations During the Nineteenth Century. Macmillan 

and Co., Cambridge (1861) 

[23]. Washizu, K.: Variational Methods in Elasticity and Plasticity. Pergamon Press, Oxford (1968) 

[24]. Weinstock, R.: Calculus of Variations: with Applications to Physics and Engineering, revised edn. Dover 

Publications, INC., New York (1974) 

[25]. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.: The Finite Element Method: Its Basis and Fundamentals, 7th edn. (2013) 

Journal of Advance Research in Mathematics and Statistics (ISSN: 2208-2409)

Vol. 6 No. 2 (2019) 9


