DOI: https://doi.org/10.53555/nnms.v4i7.539

ON SOME FIXED-POINT RESULTS IN L^P SPACE

Nedal. Hassan E. ELjaneid^{1*},

*1 Department of Mathematics, Faculty of Sciences, University of Tabuk, Kingdom of Saudi Arabia

*Corresponding Author: -

Abstract:

The Banach fixed point theorem or contraction theorem of a complete metric space into itself. It state conditions sufficient for the existence and uniqueness of a fixed point

Keyword: *Fixed point, Lp space, metric space, complete metric space*

1. INTRODUCTION:

It is well Know that the Banach contraction principle is a fundamental result in the fixed point theory, which has been used and extended in many different direction, also there are severl generalizations of usual metric space and L^p space

Definition(1.1) (Metric space, Metric): A metric space is a pair (X, d), where X is a set and d is a metric on X (or distance function on X), that is a function defined on $X \times X$ such that for all $x, y, z \in X$ we have :

is real valued, finite and nonnegative. (M1) d

 $\begin{array}{ll} (x, y) = 0 & if and only if x = y .(M2) \\ (x, y) = d(y, x) & (Symmetry)(M3) \\ (x, y) \leq d(x, z) + d(z, y) & (Triangle inequality) & (1.1) (M4) \end{array}$

Sequence space l^{∞} : as set X we take the set of all bounded sequences of complex numbers, that is every element of X is a complex sequence

(1.2)
$$x = (\xi_1, \xi_{,2}, ...)$$
 briefly $x = (\xi_j)$

Such that for all j = 1, 2, ... we have $|\xi_j| \le c_x$, where c_x is a real number which may depend on x, but does not depend on j. We choose the metric define by :

$$(x, y) = \sup_{j \in \mathbb{N}} |\xi_j - \eta_j| \qquad (1.3)$$

Where $y = (\eta)_j \in X$ and $N = \{1, 2, ...\}$, and sup denotes the supremum "least upper bounded). The metric space thus obtained is generally denoted by l^{∞} is a sequence space because each element of X is a sequence.

2. Preliminaries : (I) l^p ametric space

Let ≥ 1 be a fixed real number. By definition, each element in the space l^p is a sequence $x = (\xi_j) = (\xi_1, \xi_2, ...)$ of number such that $|\xi_1|^p + |\xi_2|^p + \cdots$ converges;

Thus $\sum_{j=1}^{\infty} |\xi_j|^p < \infty$ (2.1) $(\geq 1, fixed)$

And the metric is defined by

$$d(x, y) = \left(\sum_{j=1}^{\infty} |\xi_j - \eta_j|^p\right)^{1/p} \quad (2.2)$$

Where $y = (\eta_j)$ and $\sum |\eta_j|^p < \infty$.

In the case p = 2, we have the famous Hilbert sequence space l^2 with metric defined by :

$$d(x, y) = \sqrt{\sum_{j=1}^{\infty} |\xi_j - \eta_j|^2}$$

This space was introduced and studied by D. Hilbert (1912) in connection with integral equations and is the earliest example of what is now called a Hilbert space. We shall derive:

(2.3)

we shall delive.

(a) an auxiliary inequality : Let p > 1 and defined q by

$$\frac{1}{p} + \frac{1}{q} = 1 \tag{2.4}$$

are then called conjugate exponents. This is a standard term. p and q From (2.4) we have

$$1 = \frac{p+q}{pq}, pq = p+q, (p-1)(q-1) = 1 \quad (2.5)$$

Hence :

$$l/(p-1) = q-1$$
, so that $u = t^{p-1}$ implies $t = u^{q-1}$

Let and β be any positive numbers. Since $\alpha \beta$ is the area of the rectangle, we thus obtain by integration the inequality

$$\alpha \beta \leq \int_{0}^{a} t^{p-1} dt + \int_{0}^{r} u^{q-1} du = \frac{\alpha^{p}}{p} + \frac{\beta^{q}}{q} (2.6)$$

Note that this inequality is trivially true if $\alpha = 0$ or $\beta = 0$

Vol. 4 No. 7 (2017)

(b) the Holder inequality from (a). Let $(\overline{\xi_j})$ and $(\overline{\eta_j})$ be such that $\sum |\overline{\xi_j}|^p = 1$, $\sum |\overline{\eta_j}|^q = 1$ (2.7)

ſ

Setting $\alpha = |\overline{\xi_j}|$ and $\beta = |\overline{\eta}|$, we have from (2.6) the inequality

$$\sum \left|\bar{\xi}_j\bar{\eta}_j\right| \le \frac{1}{p} + \frac{1}{q} = 1 \tag{2.8}$$

We now take any nonzero $x = (\xi_j) \in l^p$ and $y = (\eta_j) \in l^q$ and set

$$2.9)\bar{\xi_j} = \frac{\xi_j}{\left(\Sigma |\bar{\xi}_k|^p\right)^{1/p}} , \bar{\eta}_j = \frac{\eta_j}{\left(\Sigma |\bar{\eta}_j|^q\right)^{1/q}}$$

Then (2.7) is satisfied, so that we may apply (2.8). Substituting (2.9) into (2.8) and multiplying the resulting inequality by the product of the denominators in (9)

, we arrive at the Holder inequality for sums

$$\sum_{j=1}^{\infty} |\xi_j \eta_j| \le \left(\sum_{k=1}^{\infty} |\xi_k|^p \right)^{1/p} \left(\sum_{m=1}^{\infty} |\eta_m|^q \right)^{1/q}$$
(2.10)

Where >1 and $\frac{1}{p} + \frac{1}{q} = 1$. This inequality was given by O. Holder

If = 2, then q = 2 and (2.10) yields the Cauchy –Schwarz inequality for sums

$$\sum_{j=1}^{\infty} |\xi_j \eta_j| \le \sqrt{\sum_{k=1}^{\infty} |\xi_k|^2} \sqrt{\sum_{m=1}^{\infty} |\eta_m|^2}$$
(2.11)

It is too early to say much about this case p = q = 2 in which p equals its conjugate q, but we want to make at least

(c) the Minkowski inequality from (b) : for sums

$$\left(\sum_{j=1}^{\infty} |\xi_j + \eta_j|\right)^{1/P} \le \left(\sum_{k=1}^{\infty} |\xi_k|^P\right)^{1/P} \left(\sum_{m=1}^{\infty} |\eta_m|^2\right)^{1/P} \quad (2.12)$$

Where $x = (\xi_j) \in l$ and $y = (\eta_j) \in l^p$ and $p \ge 1$ For = 1 the inequality follows readily from the formulas we shall write $\xi_j + \eta_j = \omega_j$. The triangle inequality for numbers gives

$$|\omega_j|^p = |\xi_j + \eta_j| |\omega_j|^{p-1} \le (|\xi_j| + |\eta_j|) |\omega_j|^{p-1}$$

Summing over j from 1 to any fixed n, we obtain

$$\sum_{j=1}^{n} |\omega_{j}|^{p} \leq |\xi_{j}| |\omega_{j}|^{p-1} + \sum_{j=1}^{n} |\eta_{j}| |\omega_{j}|^{p-1}$$
(2.13)

To the first sum on the right, we apply the Holder inequality, finding

$$\sum_{j=1}^{n} |\xi_{j}| |\omega_{j}|^{p-1} \leq \left[\sum_{j=1}^{n} |\xi_{k}|^{p}\right]^{1/p} + \left[\sum_{j=1}^{n} (|\omega_{m}|^{p-1})^{q}\right]^{1/q}$$

On the right we simply have: (p-1) q=p because pq = p + qTreating the last sum in (2.13) in a similar fashion, we obtain

$$\sum |\eta_j| |\omega_j|^{p-1} \le \left[\sum |\eta_k|^p\right]^{1/p} + \left[\sum (|\omega_m|^{p-1})^q\right]^{1/q}$$

Together,

$$\sum \left|\omega_{j}\right|^{p} \leq \left\{\left[\sum \left|\xi_{k}\right|\right]^{1/p} + \left[\sum \left|\eta_{k}\right|^{p}\right]^{1/p}\right\} \left(\sum \left|\omega_{j}\right|^{p}\right)^{1/p}\right\}$$

Dividing by the last factor on the right and noting that 1 - 1/q = 1/p

We obtain (2.12) with n instead of ∞ . We now let $n \to \infty$ hence the series on the left also converges, and (2.12) is proved.

(d) the triangle inequality (M4) from (c): From (2.12) it follows that for

x and y in l the series in (2.2) converges. (2.12) also yields the triangle inequality.

In fact, taking any $x, y, z \in l^p$, writing $z = (\xi_j)$ and using the triangle inequality for numbers and then (12), we obtain

$$d\left(\sum_{j=1}^{p} \left|\xi_{j}-\eta_{j}\right|^{p}\right)^{1/p}(x,y) = \left(\sum_{j=1}^{p} \left[\xi_{j}-\zeta_{j}\right]^{p}\right)^{1/p}$$
$$\leq \left(\sum_{j=1}^{p} \left|\xi_{j}-\zeta_{j}\right|^{p}\right)^{1/p} + \left(\sum_{j=1}^{p} \left|\xi_{j}-\eta_{j}\right|^{p}\right)^{1/p}$$
$$= d(x,z) + d(z,y)$$
$$\Rightarrow l^{p} \text{ is ametric space } \#$$

: here p is fixed and $1 \le p < +\infty(II)$ Completeness of l^p

Let (x_n) be any Cauchy sequence in the space l, where $x_m = (\xi_1^{(m)}, \xi_2^{(m)}, ...)$ Then for every $\epsilon > 0$ there is an N such that for all m, n > N,

$$d(x_m, x_n) = \left(\sum_{j=1}^{\infty} \left|\xi_j^{(m)} - \xi_{j1}^{(n)}\right|^p\right)^{1/p} < \epsilon \quad (2.14)$$

(m, n > N) (2.15)

It follows that for every j = 1, 2, ... we have $|\xi^{(m)} - \xi_{i1}^{(n)}| < \epsilon$

We choose a fixed j .From (2.15) we see that $(\xi_j^{(1)}, \xi_j^{(2m)}, ...)$ is a Cauchy sequence of numbers .say $\xi_j^{(m)} \rightarrow \xi_j$ as m $\rightarrow \infty. \text{Using these limits we define } x = (\xi_1, \xi_2, ...) \text{ and show that } x \in l^p \text{ and } x_m \rightarrow x \text{ .From } (2.14) \text{ we have for all } m, n > , \sum_{j=1}^{K} |\xi_j^{(m)} - \xi_{j1}^{(n)}| < \epsilon^p \quad (k = 1, 2, ...)$ Letting $n \rightarrow \infty$, we obtain for m > N, $\sum_{j=1}^{\infty} |\xi_j^{(m)} - \xi_{j1}^{(n)}| < \epsilon^p \quad (2.16)$

This show that $m^{-x} = \xi_j^{(m)} - \xi_{j_1}^{(n)} \in l^p$. Since $x_m \in l^p$ it follows by means of the Minkowski inquality (2.12) that $x = x_m + l^p$ $(x-x_m) \in l^p$.

Furthermore, the series in (2.16) represents $[d(x_m, x_n)]^p$, so that (2.16) implies that $x_m \to x$. Since (x_m) was an arbitrary Cauchy sequence in l^p .this proves

compleness of l^p , where $1 \le p \le +\infty$.

(III) Space l^p is separable: The space lp with $1 \le p \le +\infty$ is separable. Proof: Let M be the set of all sequences y of the form

$$y = (\eta_1, \eta_2, ..., \eta_n, 0, 0, ...)$$

is any positive integer and the η_i 's are rational M is countable. We where n show that M is dense in l^p . Let $= (\xi_i) \in$ l^p be arbitrary . Then for every $\epsilon > 0$

there is an *n* (depending on ϵ) such that $\sum_{j=n+1}^{\infty} |\xi_j|^p \leq \frac{\epsilon^p}{2}$

have the remainder of a converging series. Since the *because on the left w* rational are dense in R, for each there is a rational η_J close to it

$$\sum_{j=1}^{n} \left| \xi_{j} - \eta_{j} \right|^{p} \leq \frac{\epsilon^{p}}{2}$$

It follows that :

$$[d(x,y)]^{p} = \sum_{j=1}^{n} |\xi_{j} - \eta_{j}|^{p} + \leq \sum_{j=n+1}^{\infty} |\xi_{j}|^{p} \leq \frac{\epsilon^{p}}{2}$$

We thus have $(\mathbf{x}, \mathbf{y}) < \epsilon$ and see that *M* is dense in l^p

(IV) **Theorem (2.1)** (Fischer – Riesz) : l^p is a Banch space for any $1 \le p \le \infty$ **Proof :** We distinguish the cases $p = \infty$ and $1 \le p < \infty$

Case (1): $p = \infty$. Let (f_n) be a Cauchy sequence is L^{∞} , given an integer $k \ge 1$ there is an integer N_k such that $||f_m - f_n||_{\infty} \leq \frac{1}{k}$ for $m, n \geq N_k$. Hence there is a null set E_k such that

$$|f_m(x) - f_n(x)| \le \frac{1}{k} \quad \forall x \in \Omega/E_k \quad \forall m, n \ge N_k \quad (2.17)$$

Then we let $E = \bigcup_k E_k$ so that E is a null set and we see that for all The sequence $f_n(x)$ is Cauchy (in \mathbb{R}). Thus $f_n(x) \rightarrow \sum_{k=1}^{n} f_n(x)$ $f(x) x \in \Omega \setminus E$ For all $x \in \Omega \setminus E$. Passing to the limit in (2.17) as $m \to \infty$ we obtain

$$|f_m(x) - f_n(x)| \le \frac{1}{k}$$
 for all $x \in \Omega \setminus E \quad \forall n \ge N_k$

We conclude that $f \in L^{\infty}$ and $||f - f_n||_{\infty} \leq \frac{1}{k} \quad \forall n \geq N_k$

Therefore $f_n \to f$ in L^{∞} .

Case (2): $1 \le p \le \infty$. Let (f_n) be a Cauchy sequence in L^p . In order to conclude, it suffices to show that a subsequence converges in L^p

We extract a subsequence (f_{nk}) such that

$$\left| \left. f_{n_{k+1}} - f_{n_k} \right|_p \right| \le \frac{1}{2^k} \quad \forall k \ge 1$$

We claim that f_{nk} converges in p. In order to simplify the notation we write f_k instead of f_{nk} , so that we have

$$|f_{k+1} - f_k|_p \le \frac{1}{2^k} \quad \forall k \ge 1$$
 (2.18)

Let

$$g_n(x) = \sum_{k=1}^n |f_{k+1}(x) - f_k(x)|$$
 so that $||g_n||_p \le 1$

As a consequence of the monotone convergence theorem g(x) tends to a finite limit, say g(x), $a. e \text{ on } \Omega$, with $g \in L^p$. On the other hand m for $m \ge n \ge 2$ we have

$$|f_m(x) - f_n(x)| \le |f_m(x) - f_{m-1}(x)| + \dots + |f_{n+1}(x) - f_n(x)|$$
$$\le g(x) - g_{n-1}(x)$$

It follows that a.e Ω , f(x) is Cauchy and converges to a finite limit, say f(x). We have a.e on Ω , $|f(x) - f_n(x)| \le g(x)$ for $n \ge 2$ (2.19)

And in particular $f \in L$. Finally, we conclude by dominated convergence that , since $|f_n(x) - f(x)|^p \to 0$ a.e. $||f_n - f||_p \to 0$

and
$$also|f_n - f|^p \le g^P \in L^1 \#$$

3. Main Results: Banach Fixed Point Theorem:

A fixed Point : of a mapping $T: X \to X$ of a set X into itself is an $x \in X$ which is mapped onto itself, that is Tx = x, the image Tx coincides with x.

Definition (3.1) (Contraction): let X = (X, d) be a metric space.

A mapping $T: X \to X$ is called a contraction on X if there is a positive real number $\alpha < 1$ such that for all $x, y \in X$: $(Tx, Ty) \le \alpha \ d \ (x, y) \ (\alpha < 1)$ (3.1)

Geometrically this mean that any points x and have images thay are closer together than those points x and y, more precisely the ratio d(Tx, Ty)/d(x, y) does not exceed a constant α which is strictly less than 1.

Banach Fixed Point Theorem (3.2) (Contraction Theorem) :

Consider a metric space X = (X, d), where $X \neq \emptyset$. Suppose that X is complete and let $T: X \to X$ be a contraction on X. Then T has precisely one fixed point.

Proof : We construct a sequence (x_n) and show that it is Cauchy, so that it converges in the complete space X, and then we prove that its limit x is a fixed point of T and T has no further fixed points. This is the idea of the proof.

We choose any $_0 \in X$ and define the "iteravtive sequence " (x_n) by x_0 , $x_1 = Tx_{0,2} = Tx_1 = T^2x_0, \dots, x_n = T^n$ (3.2)

Clearly, this the sequence of the images of x_0 under repeated application of T. We show that (x_n) is Cauchy. By (3.1) and (3.2)

$$d(x_{m+1}, x_m) = d(Tx_{m+1}, Tx_{m-1}) \le \alpha d(x_m, x_{m-1})$$

= $\alpha (Tx_{m-1}, Tx_{m-2}) \le \alpha^2 d(x_{m-1}, x_{m-2}) \dots \le \alpha^M d(x_1, x_0)$

Hence by the triangle inequality and the formula for the sum of a geometric progression we obtain for n > m $d(x_m, x_n) = d(x_m, Tx_{m+1}) \le d(x_{m+1}, 2) + \dots + d(x_{n-1}, x_n)$

$$\leq (\alpha^{m} + \alpha^{m+1} + \dots + \alpha^{n-1}) d(x_{0,}x_{1})$$
$$= \alpha^{m} \frac{1 - \alpha^{n-m}}{1 - \alpha} d(x_{0,}x_{1})$$

Since $0 < \alpha < 1$, in the numberator we have $1 - \alpha^{n-m} < 1$. Consequently

$$d(x_m, x_n) \leq \frac{\alpha^m}{1-\alpha} d(x_0, x_1) \quad (\mathbf{n} > m) \qquad (\mathbf{3}, \mathbf{3})$$

On the right $0 < \alpha < 1$ and $d(x_0, x_1)$ is fixed, so that we can make the right hand side as small as we pleas by taking m sufficiently large

This prove that (x_m) is Cauchy. Since X is complete (x_m) converges, say

 $x_m \rightarrow x$. We show that limit *x* is a fixed point of the mapping *T*

From the triangle inequality and (3.1) we have

$$(x, Tx) \le d(x, x_m) + d(x_m, Tx) \le d(x, x_m) + \alpha \ d(x_{m-1}, x)$$

And can make the sum in the second line smaller than any preassigned $\in > 0$ because $x_m \to x$. We conclude that d(x, Tx) = 0 so that x = Tx by (M2). This shows that x is affixed point of T. is the only fixed point of T because form Tx = x and $T\tilde{x} = \tilde{x}$ obtain by (3.1) : $d(x, \tilde{x}) = d(Tx, T\tilde{x}) \le \alpha d(x, \tilde{x})$

which implies $d(x, \tilde{x})=0$ since $\alpha < 1$. Hence $x = \tilde{x}$ by (M2) and the theorem is prove #

corollary (3.3) (Iteration , error bounds) : Under the conditions of Theorem (3.2) the iterative sequence (3.2) with arbitrary $x_0 \in X$ converges to the unique fixed point x of T. Error estimates are the prior estimate

$$d(x_m, xx_n) \leq \frac{\alpha^m}{1-\alpha} \ d\left(x_0, x_1\right) \tag{3.4}$$

and the posterior estimate

$$d(x_m, xx_n) \leq \frac{\alpha^m}{1-\alpha} d\left(x_{m-1,} x_m\right) \qquad (3.5)$$

Proof : the first statement is obvious form the previous proof. Inequality (3.4) follows from (3.3) by letting $n \to \infty$. We derive (3.5)

Taking m = 1 and writing y_0 for x_0 and y_1 for x_1 , we have from (3.4)

$$d(y_1, x) \leq \frac{\alpha^{\mathrm{m}}}{1-\alpha} d(y_0, y_1)$$

Setting $_0 = x_{m-1}$, we have $y_1 = Ty_0 = x_m$, and obtain (3.5)

Theorem (3.4) : (Contraction on a ball)

Let T be a mapping of a complete metric space X = (X, d) into itself. Suppose is a contraction on a closed ball

is T satisfies (3.1) for all
$$x, y \in Y$$
. Moreover, assume $Y = \{x | d(x, x_0) \le r\}$, that that

$$(x_0, Tx_0)(1-\alpha)r$$
 (3.6)

Then the iterative sequence (3.2) converges to an $x \in Y$. This x is a fixed point of T and is the only fixed point of T in Y.

Proof : We merely have to show that all x_m 's as well as x lie in Y. We put m = 0 in (3.4), change n to m and use (3.5) to get

$$d(x_0, x_m) \le \frac{1}{1 - \alpha} d(x_0, x_1) < r$$

Hence all x_m 's are in Y. also $x \in Y$ since $x_m \to x$ and Y is closed. The assertion of the theorem now follows from the proof of Banach's theorem

Acknowledgment

Author is grateful to the referee for his/ her valuable comments and suggestions towards the improvement of the paper,

References

- [1]. Haim Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer 2011.
- [2]. Erwin Keryszig, Introductory functional analysis with applications, University of Windsor, 1978.
- [3].A.Aghjani, M.Abbas ,J.R.Roshan ,Common fixed point of generalized weak contractive mapping in partially ordered b-metric spaces ,Math.Slovaca 4(2014) .
- [4].M.Georghge, On contractive mappings, proc.Amer.Math.Soc.40(1973) 604-608.
- [5].Z.Kadelburg ,S.Radenovic , On generalized metric spaces : a survey ,TWMS .Pure Apll .Math .5(1) (2014) .
- [6].Day,M.M. (1973),Normed Linear Spaces, 3rd ed New York, Springer.
- [7]. Cheney, E.W. (1966), Introduction to Approximation Theory .New York, McGraw-Hill.