Novel rogue-like parabolic-solitons of the Kadomtsev- Petviashvili equation
DOI:
https://doi.org/10.61841/kkg5h717Keywords:
KP equation, KdV equation, Self-Similar Transformation, Parabolic Soliton, Rogue-Like WaveAbstract
We proposes a new self-similar transformation of the KP equation for mapping into KdV equation and finds its novel rogue-like parabolic solitons with the ‘short-lived’ , which is similar to the rogue wave in NLS equation for first time. The new solutions may be useful in the theory of rogue waves in a prototypical example of rogue wave in the (2+1)-dimensional nonlinear wave models. These studies could be helpful to deepen our understandings and enrich our knowledge about rogue waves.
References
Onorato, M., Residori, S., Bortolozzo, U., Montina, A., Arecchi, F., Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528(2013)47–89.
Ginzburg, N. S., Rozental, R. M., Sergeev, A. S., Fedotov, A. E., Zotova, I. V., Tarakanov V. P., Generation of Rogue Waves in Gyrotrons Operating in the Regime of Developed Turbulence. Phys. Rev. Lett. 119(2017)034801.
Onorato M., Osborne, A. R., Serio, M., Bertone, S., Freak Waves in Random Oceanic Sea States. Phys. Rev. Lett. 86(2001) 5831.
Kharif, C., Pelinovsky, E., Slunyaev, A., Rogue Waves in the Ocean. Springer Verlag, Berlin(2009).
Adcock, T. A. A., Taylor, P. H.: The physics of anomalous (‘rogue’) ocean waves. Rep. Prog. Phys.77(2014)105901.
Dudley, J. M., Genty, G., Eggleton, B. J., Harnessing and control of optical rogue waves in supercontinuum generation. Opt. Express 16(2008)3644–3651.
Kasparian, J., Bejot , P., Wolf, J. P., Dudley, J. M., Optical rogue wave statistics in laser filamentation. Opt. Express 17 (2009)12070–12075.
Shukla, P. K., Moslem, W. M., Alfvénic rogue waves. Phys. Lett. A 376(12-13 (2012)1125 –1128.
Tsai, Y. Y., Tsai, J. Y., Lin. I., Generation of acoustic rogue waves in dusty plasmas through three-dimensional particle focusing by distorted waveforms. Nature Phys. 12(6)(2016)573-577
Bludov, Y. V., Konotop, V. V., Akhmediev, N., Matter rogue waves. Phys. Rev. A 80(2009) 033610.
Vinayagam, P. S., Radha, R., Porsezian, K.,Taming rogue waves in vector Bose–Einstein condensates. Phys. Rev. E 88(2013)042906.
Ginzburg, N. S., Rozental, R. M., Sergeev, A. S., Fedotov, A. E., Zotova, I. V., Tarakanov, V. P., Generation of rogue waves in gyrotrons operating in the regime of developed turbulence. Phys. Rev. Lett. 119(2017) 034801.
Hohmann, R., Kuhl, U., Stockmann, H. J., Kaplan, L., Heller, E. J., Freak waves in the linear regime: a microwave study. Phys. Rev. Lett. 104 (2010) 093901.
Ganshin, A. N., Efimov, V. B., Kolmakov, G. V., Mezhov-Deglin, L. P., McClintock, P. V. E., Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium. Phys. Rev. Lett. 101(2008)065303.
Stenflo, L., Marklund, M., Rogue waves in the atmosphere. J. Plasma Phys. 76(2010)293 –295.
Hammani, K., Kibler, B., Finot, C., Morin, P., Millot, G., Peregrine soliton generation and breakup in standard telecommunications fiber. Opt. Lett. 36 (2011)112–114.
Shats, M., Punzmann, H., Xia, H., Capillary Rogue Waves. Phys. Rev. Lett.104 (2010) 104503.
Yan, Z. Y., Vector financial rogue waves. Phys. Lett. 375(48)(2011)4274 4279.
Han, J. F., Liang, T., Duan, W. S., Possibility of the existence of the rogue wave and the super rogue wave in granular matter. Euro. Phys. J. E 42(2019)5
Copus, M. G., Camley, R. E., Creation of magnetic rogue waves. Phys. Rev. B, 102 (2020)220410(R).
Soto-Crespo, J. M., Devine, N., Akhmediev, N., Integrable turbulence and rogue waves: breathers or solitons ?. Phys. Rev. Lett. 116(2016)103901.
Akhmediev, N., Dudley, J. M., Solli, D. R., Turitsyn, S. K., Recent progress in investigating optical rogue waves. J. Opt. 15(2013) 060201.
Ohta, Y., Yang, J. K., General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation. Proc. R. Soc. Lond. Ser. A 468(2012)1716–1740.
Christian, K., Efim, P., Physical mechanisms of the rogue wave phenomenon. Euro. J. Mech. / B Fluids 22(6)(2003) 603-634.
Wang L H, He J S, Xu H, Wang J, Porsezian K., Generation of higher-order rogue waves from multibreathers by double degeneracy in an optical fiber, Phys. Rev. E, 95(2017)042217.
Dudley, J. M., Dias, F., Erkintalo, M., Genty, G., Instabilities, breathers and rogue waves in optics. Nature Photo. 8(2014)755–764.
Ankiewicz, A., Akhmediev, N., Rogue wave-type solutions of the mKdV equation and their relation to known NLSE rogue wave solutions. Nonlinear Dyn. 91(2018) 1931–1938.
Yin, H. M., Tian, B., Zhang, C.R., Du, X. X., Zhao, X. C., Optical breathers and rogue waves via the modulation instability for a higher-order generalized nonlinear Schrödinger equation in an optical fiber transmission system. Nonlinear Dyn. 97 (2019)843–852.
Wang, Y. Y., Dai, C. Q., Zhou, G. Q., et al., Rogue wave and combined breather with repeatedly excited behaviors in the dispersion/diffraction decreasing medium. Nonlinear Dyn. 87(2017)67–73.
Temgoua, D. D. E., Tchoula Tchokonte, M. B., Maaza, M. et al., Contrast of optical activity and rogue wave propagation in chiral materials. Nonlinear Dyn. 95 (2019) 2691–2702.
Mukam, S.P.T., Souleymanou, A., Kuetche, V.K., Bouetou, T.B., Generalized Darboux transformation and parameterdependent rogue wave solutions to a nonlinear shrodinger system. Nonlinear Dyn. 93(2)(2018)373–383.
Yu, W., Liu, W., Triki, H., Zhou, Q., Biswas, A., Belic, M.R., Control of dark and anti-dark solitons in the (2+1)-dimensional coupled nonlinear Schrodinger equations with perturbed dispersion and nonlinearity in a nonlinear optical system. Nonlinear Dyn. 97(2019) 471–483.
Dai, C. Q., Wang, Y. Y. & Zhang, J. F., Managements of scalar and vector rogue waves in a partially nonlocal nonlinear medium with linear and harmonic potentials. Nonlinear Dyn. 102(2020)379–391.
Ye, Y., Liu, J., Bu, L. et al., Rogue waves and modulation instability in an extended Manakov system. Nonlinear Dyn. 102 (2020)1801–1812.
Mukam, S. P. T., Souleymanou, A., Kuetche, V. K. et al., Generalized Darboux transformation and parameter-dependent rogue wave solutions to a nonlinear Schrödinger system. Nonlinear Dyn. 93(2018)373–383.
Zhang, R. F. , Li, M. C., Yin, H.M., Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo-Miwa equation. Nonlinear Dyn. 103(2021)1071–1079.
Birkholz, S., Nibbering, E. T. J., Spatiotemporal rogue events in optical multiple filamentation. Phys. Rev. Lett. 111(2013)243903.
Solli, D. R. Ropers, C., Koonath, P., Jalali, B., Optical rogue waves. Nature 450(2007) 1054-1057.
Solli, D. R., Ropers, C., Jalali, B., Active control of rogue waves for stimulated supercontinu.um generation. Phys. Rev. Lett. 101(2008)233902
Kibler, B., Fatome, J., Finot, C., Millot, G., Genty, G., Wetzel, B., Akhmediev, N., Dias, F., Dudley, J.M., Observation of Kuznetsov-Ma soliton dynamics in optical fiber. Sci. Rep. 2(2012)463.
Chabchoub, A., Hoffmannn N. P., Akhmediev, N., Rogue wave observation in a water wave tank. Phys. Rev. Lett.106(2011) 204502.
Bailung, H., Sharma, S. K., Nakamura, Y., Observations of peregrine solitons in a multi- component plasma with negative ions. Phys. Rev. Lett. 107(2011)255005.
Xiong, H., Gan, J. H., Wu, Y., Kuznetsov-Ma Soliton dynamics based on the mechanical effect of light .Phys. Rev. Lett. 119(2017)153901.
Kodama,Y., KP solitons in shallow water, J. Phys. A: Math. Theor. 43(2010)434004.
Korteweg, D. J., and De Vries, G., On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Philos. Mag. 39(1895)422.
Shrira, V., and Geogjaev V., What makes the Peregrine soliton so special as a prototype of freak waves? J. Eng. Math. 67(2010)11.
Nikolkina, I., and Didenkulova,I., Rogue waves in 2006-2011, Nat. Hazards Earth Syst. Sci. 11 (2011)2913.
Levi D., Levi-Civita theory for irrotational water waves in a one-dimensional channel and the complex Korteweg-de Vries equation,Teor. Mat. Fiz. 99(1994)435. [Theor. Math. Phys. 99 (1994)705.]
Abdel-Gawad,H. I.,Tantawy, M., and Elkhair. R. E. A., Waves Random Complex Media 26 (2016)397.
Ankiewicz, A.,Bokaeeyan, M., and Akhmediev N., Shallow-water rogue waves: An approach based on complex solutions of the Korteweg–de Vries equation, Phys.Rev.E 99 (2019) 050201(R).
Nishitani, T., and Tajiri, M., Similarity Solutions of the Kadomtsev-Petviashvili Equation, J. Phys. Soc. Jpn. 51 (1982)2350.
Lou S.-Y., Similarity reductions of the KP equation by a direct method, J. Phys. A 24 (1991) 1455.
Lou, S.-Y., Ruan H.-Y., Chen D.-F., and Chen W.-Z., Similarity solutions of the Kadomtsev- Petviashvili equation, J. Phys. A 23 (1990) L649.
Clarkson, P. A., Nonclassical symmetry reductions for the Kadomtsev-Petviashvili equation, Physica D 49 (1991)257.
Zabusky, N. J., and Kruskal, M. D., Shallow-water waves, the Korteweg-deVries equation and solitons, Phys. Rev. Lett. 15 (1965)240.
Hirota, R., Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett. 27(1971)1192.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Jie-fang Zhang, Mei-zhen Jin (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.